Part Number Hot Search : 
KSR1205 BD4148 E3055T 21M2D25 MB87014A 1SM5927B ONDUC WNMD2165
Product Description
Full Text Search
 

To Download XM20C64PMHR-55 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 XM20C64 64K
XM20C64
High Speed AUTOSTORETM NOVRAM
8K x 8
FEATURES
DESCRIPTION
The XM20C64 is a high speed nonvolatile RAM Module. It is comprised of four Xicor X20C16 high speed NOVRAMs, a high speed decoder and decoupling capacitors mounted on a co-fired multilayered Ceramic substrate. The XM20C64 is configured 8K x 8 and is fully decoded. The module is a 28-lead DIP conforming to the industry standard pinout for SRAMs. The XM20C64 fully supports the AUTOSTORE feature, providing hands-off automatic storing of RAM data into E2PROM when VCC falls below the AUTOSTORE threshold. The XM20C64 is a highly reliable memory component, supporting unlimited writes to RAM, a minimum 1,000,000 store cycles and a minimum 100 year data retention.
* * * * * * * * * * *
High Speed: tAA = 55ns NO Batteries!! Low Power CMOS AUTOSTORETM NOVRAM --Automatically Stores RAM data to E2PROM upon Power-fail Detection Open Drain AUTOSTORE Output Pin --Provides Interrupt or Status Information --Linkable to System Reset Circuitry Auto Recall --Automatically Recalls E2PROM Data During Power-on Fully Decoded Module Full Military Temperature Range -- -55C to +125C High Reliability --Endurance: 1,000,000 Nonvolatile Store Cycles --Data Retention: 100 Years ESD Protection --2KV All Pins Also Available in 66 Pin PUMA Package
FUNCTIONAL DIAGRAM
2 25 31 23
PIN CONFIGURATION
NE
A0-A10
NE OE WE
NE OE WE CE
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
VCC WE AS A8 A9 A11 OE A10 CE I/O7 I/O6 I/O5 I/04 I/O3
A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 VSS
I/O 30
2 A11 A12 2 3 A0 A1 Y0 Y1 Y2 Y3 CE 1 4 5 6 7 2 25 31 23 25 31 23
NE OE WE CE
A0-A10
I/O 30
NE OE WE CE
A0-A10
I/O 30
2 25 31 23 AUTOSTORE
AUTOSTORETM NOVRAM is a trademark of Xicor, Inc. (c)Xicor, Inc. 1991, 1995, 1996 Patents Pending 3874-1.6 6/20/96 T0/C2/D0 NS
3874 FHD F02.1
NE OE WE CE
A0-A10
A0-A10
I/O 30
I/O0-I/O7
3874 FHD F01
1
Characteristics subject to change without notice
XM20C64
PIN DESCRIPTIONS Addresses (A0-A12) The address inputs select an 8-bit memory location during read and write operations. Chip Enable (CE) The chip enable input must be LOW to enable all read, write and user requested nonvolatile operations. Output Enable (OE) During normal RAM operations OE controls the data output buffers. If a hardware nonvolatile operation is selected (NE = CE = LOW) and OE strobes LOW, a recall operation will be initiated. OE LOW will always disable a STORE operation regardless of the state of NE, WE, and CE so long as the internal transfer has not commenced. Write Enable (WE) During normal RAM operations WE = CE = LOW will cause data to be written to the RAM address pointed to by the A0-A12 inputs. Nonvolatile Enable (NE) The nonvolatile input controls the transfer of data from the E2PROM array to the RAM array, when strobed LOW in conjunction with CE = OE = LOW. Data In/Data Out (I/O0-I/O7) Data is written to or read from the X20C64 through the I/O pins. The I/O pins are placed in the high impedance state when either CE or OE is HIGH or when NE is LOW. AUTOSTORE Output (AS) AS is an open-drain output. When it is asserted (driving LOW) it indicates VCC has fallen below the AUTOSTORE threshold and an internal store operation has been initiated. Because AS is an open drain output it may be wire-ORed with multiple open drain outputs and used as an interrupt input to a microprocessor. DEVICE OPERATION NOVRAM operations are identical to those of a standard SRAM. When OE and CE are asserted data is presented at the I/Os from the address location pointed to by the A0-A12 inputs. RAM write operations are initiated and the address input is latched by the HIGH to LOW transition of CE or WE, whichever occurs last. Data is latched on the rising edge of either CE or WE, whichever occurs first. An array recall, E2PROM data transferred to RAM, is initiated whenever OE = NE = CE = LOW. A recall is also performed automatically upon power-up. Command Sequence Operations The X20C64 employs a version of the industry standard Software Data Protection (SDP). The end user can select various options for transferring data from RAM into the E2PROM array. All command sequences are comprised of three specific data/address write operations performed with NE LOW. A Store operation can be directly selected by issuing a Store command. The user may also enable and disable the AUTOSTORE function through the software data protection sequence. Refer to Table 1 below for a complete description of the command sequence. Operational Notes The X20C64 should be viewed as a subsystem when writing software for the various store operations. The module contains four discrete components each needing to be set to the required state individually. The two high order address bits (A11 and A12) select only one of the four components.
2
XM20C64
TABLE 1 Step 1 2 3 Operation Write Write Write A0-A10* 555 2AA 555 Data Pattern AA 55 Command
3874 PGM T11
TABLE 2 Command CC[H] CD[H] 33[H] Function Enable Autostore Disable Autostore Store Operation
3874 PGM T12.2
* It should be noted, the high order addresses should remain stable during the operations. It should also be noted that these commands are not global, that is only one device on the module will be affected by each command operation.
Command Sequence Timing Limits Limits Symbol tSTO tSP tSPH
Note:
Parameter Store Time Command Write Pulse Width Inter Command Delay
Min. 50 55
Max. 5
Units ms ns ns
3874 PGM T01.1
All Write Command Sequence timings must conform to the standard write timing requirements.
Command Sequence
tSTO ADDRESS 555 2AAA 555
OE tSP CE
WE
NE tDS DATA IN AA tDH 55 CMD
3874 FHD F03.1
3
XM20C64
ABSOLUTE MAXIMUM RATINGS* Temperature Under Bias .................. -65C to +125C Storage Temperature ....................... -65C to +125C Voltage on any Pin with Respect to VSS ............................................ -1V to +7V Lead Temperature (Soldering, 10 seconds) .............................. 300C *COMMENT Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the module. This is a stress rating only and the functional operation of the module at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect module reliability.
RECOMMENDED OPERATING CONDITIONS Temperature Military Min. -55C Max. +125C
3874 PGM T06
Supply Voltage XM20C64
Limits 5V 10%
3874 PGM T07
D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.) Limits Symbol lCC1 Parameter VCC Active Current Min. Max. 100 Units mA Test Conditions NE = WE + VIH, CE = OE = VIL, Address Inputs = TTL Inputs @ f = 20MHz All I/Os = Open All Inputs = VIH, All I/Os = Open All Inputs = VCC-0.3V All I/Os = Open VIN = VSS to VCC VIN = VSS to VCC, CE = VIH
ICC2 ISB ILI ILO VIL(1) VIH(1) VOL VOLAS VOH
VCC Active Current (AUTOSTORE) VCC Standby Current Input Leakage Current Output Leakage Current Input LOW Voltage Input HIGH Voltage Output LOW Voltage AUTOSTORE Output Voltage Output HIGH Voltage
10 1.5 10 10 0.8 VCC + 0.5 0.4 0.4
mA mA A A V V V V V
-0.5 2
IOL = 5mA IOLAS = 1mA IOH = -4mA
3874 PGM T08.2
2.4
POWER-UP TIMING Symbol tPUR tPUST Parameter Power-Up (VCC Min.) to RAM Operation Power-Up (VCC Min.) to Store Operation Max. 500 5 Units s ms
3874 PGM T09
CAPACITANCE TA = +25C, f = 1MHz, VCC = 5V. Symbol CI/O CIN(2)
(2)
Test Input/Output Capacitance Input Capacitance
Max. 40 24
Units pF pF
Conditions VI/O = 0V VIN = 0V
3874 PGM T10.1
Notes: (1) VIL min. and VIH max. are for reference only and are not tested. (2) This parameter is periodically sampled and not 100% tested.
4
XM20C64
A.C. CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified) Read Cycle Limits Limits Symbol tRC tCE tAA tOE tLZ(3) tOLZ(3) tHZ(3) tOHZ(3) tOH Parameter Read Cycle Time Chip Enable Access Time Address Access Time Output Enable Access Time CE Low to Output in Low Z OE Low to Output in Low Z CE High to Output in Low Z OE High to Output in Low Z Output Hold Min. 55 55 55 30 0 0 0 0 0 Max. Units ns ns ns ns ns ns ns ns ns
3874 PGM T03
25 25
Read Cycle Timing Diagram
tRC ADDRESS tCE CE tOE OE tOLZ tLZ I/O tAA
Note:
tHZ tOH tOHZ
3874 FHD F05
(3) tLZ min., tHZ min., tOLZ min., and tOHZ min. are periodically sampled and not 100% tested. tHZ max. and tOHZ max. are measured from the point when CE or OE return high (whichever occurs first) to the time when the outputs are no longer driven.
MODE SELECTION CE H L L L L L L L WE X H L L H H H L NE X H H L H L L L OE X L X H H L H L Mode Module Not Selected Read RAM Active Write RAM Issue Software Command Output Disabled Hardware Array Recall No Operation Not Allowed I/O State High Z Data Output Data Input Data Input High Z High Z High Z High Z Power Standby Active Active Active Active Active Active Active
3874 PGM T04.1
5
XM20C64
Write Cycle Limits Limits Symbol tWC tWP tCW tAS tDS tDH tOW tWR Parameter Write Cycle time WE Pulse Width CE Pulse Width Address Setup Data Setup Data Hold Output Active from End of Write End of Write to Read Min. 55 40 40 0 25 0 5 0 Max. Units ns ns ns ns ns ns ns ns
3874 PGM T02
Write Cycle Timing Diagram
tWC ADDRESS
OE tCW CE tAS WE tOW DATA OUT tDS DATA IN DATA VALID
3874 FHD F04
tWR
tWP
tDH
6
XM20C64
Array Recall Timing Limits Symbol tRCC tRCP tRWE
Note:
Parameter Array Recall Time Recall Strobe Pulse Width Delay From WE HIGH to Recall
Min. 50 0
Max. 10
Units s ns ns
3874 PGM T05.1
The recall sequence must be repeated for each memory component individually. This is accomplished by sequencing through the Array Recall Cycle with all four combinations of A11, and A12.
Array Recall Cycle
tRCC ADDRESS tRCP NE
OE tRWE WE
CE
DATA I/O
3874 FHD F06.1
EQUIVALENT TEST LOAD CIRCUIT
SYMBOL TABLE
WAVEFORM INPUTS Must be steady OUTPUTS Will be steady Will change from LOW to HIGH Will change from HIGH to LOW Changing: State Not Known Center Line is High Impedance
5V
735 OUTPUT 318 30pF
May change from LOW to HIGH May change from HIGH to LOW Don't Care: Changes Allowed N/A
3874 FHD F07.2
7
XM20C64P XM20C64
PIN CONFIGURATION
1 12 23 34 45 56
I/O8 I/O9
WE2 I/O15 CE2 I/O14
I/O24 VCC I/O31 I/O25 CE4 I/O30 I/O26 WE4 I/O29 A6 A7 A15 A8 A9 I/O27 I/O28 A3 A4 A5 A0 A1 A2
I/O10 GND I/O13 AS NE NC NC NC I/O0 I/O1 I/O2 11 I/O11 I/O12 A10 NC NC VCC CE1 NC I/O3 22 OE NC WE1 I/O7 I/O6 I/O5 I/O4 33
WE3 I/O23
I/O16 CE3 I/O22 I/O17 GND I/O21 I/O18 I/O19 I/O20 44 55 66
3874 ILL F10
PACKAGING INFORMATION
1.09+/-.010 SQ
.149+/-.015
.180 .050 TYP .100 TYP PIN #1 IDENTIFIER (NOT CHAMFERED) .100 TYP .600 TYP
.320 MAX .050 .018
0.15 .040
ALL MEASUREMENTS IN INCHES
.410
.164
.130
3874 ILL F11
8
XM20C64
PACKAGING INFORMATION 28-PIN DUAL-IN-LINE PACKAGE CERAMIC LEADLESS CHIP CARRIERS ON CERAMIC SIDEBRAZED CERAMIC SUBSTRATE
.600 (15.24) .580 (14.73)
PIN 1
1.600 MAX. (40.64)
.295 MAX. (6.00)
.010 MIN. (.25)
.140 MIN. (3.56)
.018 .002 (.46 .05) 1.300 .005 (33.02 0.13) TOL. NON. ACCUM.
.100 .005 TYP. (2.54 .13)
+ .002 - .001 + .05 (.25 ) - .03 .010
.600 .010 (15.24 .25)
NOTES: 1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS) 2. DIMENSIONS WITH NO TOLERANCE FOR REFERENCE ONLY
3926 FHD F40
9
XM20C64P XM20C64
NOTES
10
XM20C64
ORDERING INFORMATION XM20C64: 2K X 8 CMOS NOVRAM Memory Module
XM20C64 Device
X
X
-X Access Time -55 = 55ns Temperature Range Blank = Commercial = 0C to +70C I = Industrial = -40C to +85C M = Military = -55C to +125C MHR = Military High Rel Blank = 28 Lead Ceramic DIP Module P = 66 Pin PUMA Module
LIMITED WARRANTY
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices at any time and without notice. Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, licenses are implied. U.S. PATENTS Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829, 482; 4,874, 967; 4,883, 976. Foreign patents and additional patents pending. LIFE RELATED POLICY In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection and correction, redundancy and back-up features to prevent such an occurrence. Xicor's products are not authorized for use in critical components in life support devices or systems. 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
11


▲Up To Search▲   

 
Price & Availability of XM20C64PMHR-55

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X